Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
2.
Animal Model Exp Med ; 3(1): 93-97, 2020 Mar.
Article in English | MEDLINE | ID: covidwho-2288057

ABSTRACT

BACKGROUND: Since December 2019, an outbreak of the Corona Virus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2) in Wuhan, China, has become a public health emergency of international concern. The high fatality of aged cases caused by SARS-CoV-2 was a need to explore the possible age-related phenomena with non-human primate models. METHODS: Three 3-5 years old and two 15 years old rhesus macaques were intratracheally infected with SARS-CoV-2, and then analyzed by clinical signs, viral replication, chest X-ray, histopathological changes and immune response. RESULTS: Viral replication of nasopharyngeal swabs, anal swabs and lung in old monkeys was more active than that in young monkeys for 14 days after SARS-CoV-2 challenge. Monkeys developed typical interstitial pneumonia characterized by thickened alveolar septum accompanied with inflammation and edema, notably, old monkeys exhibited diffuse severe interstitial pneumonia. Viral antigens were detected mainly in alveolar epithelial cells and macrophages. CONCLUSION: SARS-CoV-2 caused more severe interstitial pneumonia in old monkeys than that in young monkeys. Rhesus macaque models infected with SARS-CoV-2 provided insight into the pathogenic mechanism and facilitated the development of vaccines and therapeutics against SARS-CoV-2 infection.

3.
Nature ; 2023 Apr 05.
Article in English | MEDLINE | ID: covidwho-2269386

ABSTRACT

SARS-CoV-2, the causative agent of COVID-19, emerged in December 2019. Its origins remain uncertain. It has been reported that a number of the early human cases had a history of contact with the Huanan Seafood Market. Here we present the results of surveillance for SARS-CoV-2 within the market. From January 1st 2020, after closure of the market, 923 samples were collected from the environment. From 18th January, 457 samples were collected from 18 species of animals, comprising of unsold contents of refrigerators and freezers, swabs from stray animals, and the contents of a fish tank. Using RT-qPCR, SARS-CoV-2 was detected in 73 environmental samples, but none of the animal samples. Three live viruses were successfully isolated. The viruses from the market shared nucleotide identity of 99.99% to 100% with the human isolate HCoV-19/Wuhan/IVDC-HB-01/2019. SARS-CoV-2 lineage A (8782T and 28144C) was found in an environmental sample. RNA-seq analysis of SARS-CoV-2 positive and negative environmental samples showed an abundance of different vertebrate genera at the market. In summary, this study provides information about the distribution and prevalence of SARS-CoV-2 in the Huanan Seafood Market during the early stages of the COVID-19 outbreak.

4.
Virol J ; 20(1): 13, 2023 01 20.
Article in English | MEDLINE | ID: covidwho-2214603

ABSTRACT

BACKGROUND: Porcine epidemic diarrhea virus (PEDV) variant strains cause great economic losses to the global swine industry. However, vaccines do not provide sufficient protection against currently circulating strains due to viral mutations. This study traced the molecular characteristics of the most recent isolates in China and aimed to provide a basis for the prevention and treatment of PEDV. METHODS: We obtained samples from a Chinese diarrheal swine farm in 2022. Reverse transcription polymerase chain reaction and immunofluorescence were used to determine the etiology, and the full-length PEDV genome was sequenced. Nucleotide similarity was calculated using MEGA to construct a phylogenetic tree and DNASTAR. Mutant amino acids were aligned using DNAMAN and modeled by SWISS-MODEL, Phyre2 and FirstGlance in JMOL for protein tertiary structure simulation. Additionally, TMHMM was used for protein function prediction. RESULTS: A PEDV virulent strain CH/HLJJS/2022 was successfully isolated in China. A genome-wide based phylogenetic analysis suggests that it belongs to the GII subtype, and 96.1-98.9% homology existed in the whole genomes of other strains. For the first time, simultaneous mutations of four amino acids were found in the highly conserved membrane (M) and nucleocapsid (N) proteins, as well as eight amino acid mutations that differed from the vast majority of strains in the spike (S) protein. Three of the mutations alter the S-protein spatial structure. In addition, typing markers exist during strain evolution, but isolates are using the fusion of specific amino acids from multiple variant strains to add additional features, as also demonstrated by protein alignments and 3D models of numerous subtype strains. CONCLUSION: The newly isolated prevalent strain CH/HLJJS/2022 belonged to the GII subtype, and thirteen mutations different from other strains were found, including mutations in the highly conserved m and N proteins, and in the S1° and COE neutralizing epitopes of the S protein. PEDV is breaking through original cognitions and moving on a more complex path. Surveillance for PEDV now and in the future and improvements derived from mutant strain vaccines are highly warranted.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Viral Vaccines , Swine , Animals , Phylogeny , Mutation , Viral Vaccines/genetics , Amino Acids/genetics , China/epidemiology , Coronavirus Infections/diagnosis , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Swine Diseases/epidemiology
6.
Front Immunol ; 13: 939989, 2022.
Article in English | MEDLINE | ID: covidwho-2039676

ABSTRACT

The World Health Organization has defined long COVID-19 (LC) as a condition that occurs in individuals with a history of SARS-CoV-2 infection who exhibit persistent symptoms after its acute phase that last for at least two months and cannot be explained by an alternative diagnosis. Since we had previously reported residual viral antigens in tissues of convalescent patients, we aimed to assess the presence of such antigens in long COVID tissues. Here, we established the presence of the residual virus in the appendix, skin, and breast tissues of 2 patients who exhibited LC symptoms 163 and 426 days after symptom onset. With multiplex immunohistochemistry, we detected viral nucleocapsid protein in all three tissues. The nucleocapsid protein was further observed to colocalize with macrophage marker CD68, suggesting that immune cells were direct targets of SARS-CoV-2. Additionally, using RNAscope, the presence of viral RNA was also detected. Our positive finding in the breast tissue is corroborated by the recent reports of immunocompromised patients experiencing LC symptoms and persistent viral replication. Overall, our findings and emerging LC studies raise the possibility that the gastrointestinal tract may function as a reservoir for SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Antigens, Viral , COVID-19/complications , Humans , Nucleocapsid Proteins , RNA, Viral , Post-Acute COVID-19 Syndrome
7.
J Clin Microbiol ; 60(5): e0006622, 2022 05 18.
Article in English | MEDLINE | ID: covidwho-1779307

ABSTRACT

As the incidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) begins to overlap with the traditional respiratory season in the Northern Hemisphere, simultaneous testing for SARS-CoV-2 and the other common causes of respiratory infections is imperative. This has led to the development of multiplex respiratory assays that include SARS-CoV-2 as a target. One such assay is the BioFire respiratory panel 2.1 (RP2.1), which is an expansion of the original BioFire FilmArray respiratory panel 2 (RP2) to include SARS-CoV-2. In this multicenter evaluation, we assessed the performance characteristics of the BioFire RP2.1 for the detection of SARS-CoV-2. One or more targets on the panel were detected in 19.3% (101/524) of specimens tested, with SARS-CoV-2 detected in 12.6% (66/524) of specimens. Human rhinovirus/enterovirus was also detected in 32.7% (33/101) and adenovirus in 3.0% (3/101) of positive specimens, with one dual positive for both SARS-CoV-2 and adenovirus being detected. A further breakdown of pathogens by age revealed a 4-fold predominance of human rhinovirus/enterovirus in subjects 0 to 18 years of age, whereas in all other age groups, SARS-CoV-2 was clearly the predominant pathogen. Overall, SARS-CoV-2 results obtained from the BioFire RP2.1 were highly concordant with the composite result, exhibiting 98.4% (61/62) positive percent agreement (95% confidence interval [CI], 91.4 to 99.7%) and 98.9% (457/462) negative percent agreement (95% CI, 97.5 to 99.5%) with further analysis of discordant results suggesting that the concentration of SARS-CoV-2 in the specimens was near the limit of detection (LoD) for both the BioFire RP2.1 and the comparator assays. Overall, the BioFire RP2.1 exhibited excellent performance in the detection of SARS-CoV-2.


Subject(s)
COVID-19 , Respiratory Tract Infections , Viruses , Adolescent , COVID-19/diagnosis , Child , Child, Preschool , GTP-Binding Proteins , Humans , Infant , Infant, Newborn , Membrane Proteins , Nasopharynx , Respiratory Tract Infections/diagnosis , Rhinovirus , SARS-CoV-2 , Sensitivity and Specificity
8.
Lancet Microbe ; 3(3): e193-e202, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1721237

ABSTRACT

BACKGROUND: Safe and effective vaccines are urgently needed to end the COVID-19 pandemic caused by SARS-CoV-2 infection. We aimed to assess the preliminary safety, tolerability, and immunogenicity of an mRNA vaccine ARCoV, which encodes the SARS-CoV-2 spike protein receptor-binding domain (RBD). METHODS: This single centre, double-blind, randomised, placebo-controlled, dose-escalation, phase 1 trial of ARCoV was conducted at Shulan (Hangzhou) hospital in Hangzhou, Zhejiang province, China. Healthy adults aged 18-59 years negative for SARS-CoV-2 infection were enrolled and randomly assigned using block randomisation to receive an intramuscular injection of vaccine or placebo. Vaccine doses were 5 µg, 10 µg, 15 µg, 20 µg, and 25 µg. The first six participants in each block were sentinels and along with the remaining 18 participants, were randomly assigned to groups (5:1). In block 1 sentinels were given the lowest vaccine dose and after a 4-day observation with confirmed safety analyses, the remaining 18 participants in the same dose group proceeded and sentinels in block 2 were given their first administration on a two-dose schedule, 28 days apart. All participants, investigators, and staff doing laboratory analyses were masked to treatment allocation. Humoral responses were assessed by measuring anti-SARS-CoV-2 RBD IgG using a standardised ELISA and neutralising antibodies using pseudovirus-based and live SARS-CoV-2 neutralisation assays. SARS-CoV-2 RBD-specific T-cell responses, including IFN-γ and IL-2 production, were assessed using an enzyme-linked immunospot (ELISpot) assay. The primary outcome for safety was incidence of adverse events or adverse reactions within 60 min, and at days 7, 14, and 28 after each vaccine dose. The secondary safety outcome was abnormal changes detected by laboratory tests at days 1, 4, 7, and 28 after each vaccine dose. For immunogenicity, the secondary outcome was humoral immune responses: titres of neutralising antibodies to live SARS-CoV-2, neutralising antibodies to pseudovirus, and RBD-specific IgG at baseline and 28 days after first vaccination and at days 7, 15, and 28 after second vaccination. The exploratory outcome was SARS-CoV-2-specific T-cell responses at 7 days after the first vaccination and at days 7 and 15 after the second vaccination. This trial is registered with www.chictr.org.cn (ChiCTR2000039212). FINDINGS: Between Oct 30 and Dec 2, 2020, 230 individuals were screened and 120 eligible participants were randomly assigned to receive five-dose levels of ARCoV or a placebo (20 per group). All participants received the first vaccination and 118 received the second dose. No serious adverse events were reported within 56 days after vaccination and the majority of adverse events were mild or moderate. Fever was the most common systemic adverse reaction (one [5%] of 20 in the 5 µg group, 13 [65%] of 20 in the 10 µg group, 17 [85%] of 20 in the 15 µg group, 19 [95%] of 20 in the 20 µg group, 16 [100%] of 16 in the 25 µg group; p<0·0001). The incidence of grade 3 systemic adverse events were none (0%) of 20 in the 5 µg group, three (15%) of 20 in the 10 µg group, six (30%) of 20 in the 15 µg group, seven (35%) of 20 in the 20 µg group, five (31%) of 16 in the 25 µg group, and none (0%) of 20 in the placebo group (p=0·0013). As expected, the majority of fever resolved in the first 2 days after vaccination for all groups. The incidence of solicited systemic adverse events was similar after administration of ARCoV as a first or second vaccination. Humoral immune responses including anti-RBD IgG and neutralising antibodies increased significantly 7 days after the second dose and peaked between 14 and 28 days thereafter. Specific T-cell response peaked between 7 and 14 days after full vaccination. 15 µg induced the highest titre of neutralising antibodies, which was about twofold more than the antibody titre of convalescent patients with COVID-19. INTERPRETATION: ARCoV was safe and well tolerated at all five doses. The acceptable safety profile, together with the induction of strong humoral and cellular immune responses, support further clinical testing of ARCoV at a large scale. FUNDING: National Key Research and Development Project of China, Academy of Medical Sciences China, National Natural Science Foundation China, and Chinese Academy of Medical Sciences.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , China , Humans , Immunogenicity, Vaccine , Immunoglobulin G , Pandemics/prevention & control , Spike Glycoprotein, Coronavirus , Vaccines, Synthetic , mRNA Vaccines
9.
Cell Discov ; 8(1): 17, 2022 Feb 15.
Article in English | MEDLINE | ID: covidwho-1692628

ABSTRACT

The continuous emergence of SARS-CoV-2 variants highlights the need of developing vaccines with broad protection. Here, according to the immune-escape capability and evolutionary convergence, the representative SARS-CoV-2 strains carrying the hotspot mutations were selected. Then, guided by structural and computational analyses, we present a mutation-integrated trimeric form of spike receptor-binding domain (mutI-tri-RBD) as a broadly protective vaccine candidate, which combined heterologous RBDs from different representative strains into a hybrid immunogen and integrated immune-escape hotspots into a single antigen. When compared with a homo-tri-RBD vaccine candidate in the stage of phase II trial, of which all three RBDs are derived from the SARS-CoV-2 prototype strain, mutI-tri-RBD induced significantly higher neutralizing antibody titers against the Delta and Beta variants, and maintained a similar immune response against the prototype strain. Pseudo-virus neutralization assay demonstrated that mutI-tri-RBD also induced broadly strong neutralizing activities against all tested 23 SARS-CoV-2 variants. The in vivo protective capability of mutI-tri-RBD was further validated in hACE2-transgenic mice challenged by the live virus, and the results showed that mutI-tri-RBD provided potent protection not only against the SARS-CoV-2 prototype strain but also against the Delta and Beta variants.

10.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1379777.v2

ABSTRACT

The World Health Organization has defined long COVID-19 (LC) as a condition where patients exhibit persistent symptoms over time after its acute phase, which cannot be explained by alternative diagnosis. Since we have previously reported residual viral antigens in tissues of convalescent patients, we now aim to assess the presence of such antigens in post-convalescent tissues. Here, we established the presence of residual virus within the appendix and breast tissue of 2 patients who exhibited LC symptoms, 175 to 462 days upon positive diagnosis, using immunohistological techniques. We observed positive staining for viral nucleocapsid protein (NP) in the appendix, and tumour-adjacent region of the breast, but not within the tumour via multiplex immunohistochemistry. Notably, with RNAscope, both positive-sense and negative-sense (replicative intermediate) viral RNA were detected. As a single-stranded virus, SARS-CoV-2, have to produce a replicative intermediate as a template to synthesize new genomic RNAs. Thus, the detection of negative-sense viral RNA suggests ongoing viral replication. While viral RNA and antigen from gastrointestinal and stool samples of convalescent patients has been extensively reported, we believe this is the first study to detect viable virus. Furthermore, our positive finding in the breast tissue also corroborated with recent reports that immunocompromised patients had also experienced LC symptoms and persistent viral replication. Overall, our findings, along with emerging LC studies, raises the possibility of the gastrointestinal tract functioning as a reservoir.


Subject(s)
COVID-19
11.
Microbiol Spectr ; 10(1): e0109021, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1673362

ABSTRACT

The rapid emergence of the coronavirus disease 2019 (COVID-19) pandemic has introduced a new challenge in diagnosing and differentiating respiratory infections. Accurate diagnosis of respiratory infections, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is complicated by overlapping symptomology, and stepwise approaches to testing for each infection would lead to increased reagent usage and cost, as well as delays in clinical interventions. To avoid these issues, multiplex molecular assays have been developed to differentiate between respiratory viruses in a single test to meet clinical diagnostic needs. To evaluate the analytical performance of the FDA emergency use authorization (EUA)-approved Abbott Alinity m resp-4-plex assay (Alinity m) in testing for SARS-CoV-2, influenza A virus, influenza B virus, and respiratory syncytial virus (RSV), we compared its performance to those of both the EUA-approved Cepheid Xpert Xpress SARS-CoV-2, influenza A/B virus, and RSV assay (Xpert Xpress) and the EUA-approved Roche Cobas SARS-CoV-2 and influenza A/B virus assay (Cobas) in a single-center retrospective analysis. High concordance was observed among all three assays, with kappa statistics showing an almost perfect agreement (>0.90). The limit of detection (LOD) results for SARS-CoV-2 showed the Alinity m exhibiting the lowest LOD at 26 copies/mL, followed by the Cobas at 58 copies/mL and the Xpert Xpress at 83 copies/mL, with LOD results for the influenza A virus, influenza B virus, and RSV viral targets also showing equivalent or better performance on the Alinity m compared to the other two platforms. The Alinity m can be used as a high-volume testing platform for SARS-CoV-2, influenza A virus, influenza B virus, and RSV and exhibits analytical performance comparable to those of both the Xpert Xpress and Cobas assays. IMPORTANCE The rapid emergence of SARS-CoV-2 has introduced a new challenge in diagnosing and differentiating respiratory infections, especially considering the overlapping symptomology of many of these infections and differences in clinical interventions depending on the pathogen identified. To avoid these issues, multiplex molecular assays like the one described in this article need to be developed to differentiate between the most common respiratory pathogens in a single test and most effectively meet clinical diagnostic needs.


Subject(s)
Influenza A virus/isolation & purification , Influenza B virus/isolation & purification , Respiratory Syncytial Viruses/isolation & purification , Respiratory Tract Infections/diagnosis , SARS-CoV-2/isolation & purification , Diagnosis, Differential , Humans , Respiratory Tract Infections/virology , Sensitivity and Specificity , Time Factors
12.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.01.12.473243

ABSTRACT

The >30 mutated residues in the Omicron spike protein have led to its rapid classification as a new SARS-CoV-2 variant of concern. As a result, Omicron may escape from the immune system, decreasing the protection provided by COVID-19 vaccines. Preliminary data shows a weaker neutralizing antibody response to Omicron compared to the ancestral SARS-CoV-2 virus, which can be increased after a booster vaccine. Here, we report that CD8+ T cells can recognize Omicron variant epitopes presented by HLA-A*02:01 in both COVID-19 recovered and vaccinated individuals, even 6 months after infection or vaccination. Additionally, the T cell response was stronger for Omicron variant epitopes after the vaccine booster. Altogether, T cells can recognize Omicron variants, especially in vaccinated individuals after the vaccine booster.


Subject(s)
COVID-19
13.
J Appl Lab Med ; 6(5): 1213-1220, 2021 09 01.
Article in English | MEDLINE | ID: covidwho-1387918

ABSTRACT

INTRODUCTION: The ePlex® SARS-CoV-2 emergency use authorization (EUA) test is a cartridge-based assay for the detection of SARS-CoV-2 in nasopharyngeal specimens. Since performance data has been previously published on this platform, the manufacturer has modified the workflow design in order to improve assay performance. Evaluation of the new workflow, which eliminated the sample delivery device (SDD), led to a dramatic improvement of assay performance while saving time and making cartridge loading more convenient. METHODS: 145 confirmed positive nasopharyngeal swab specimens were used to evaluate the assay analytical sensitivity, accuracy, and overall time-saving for the 2 workflows that is with and without the use of SDD on the ePlex SARS-CoV-2 test. RESULTS: Elimination of the SDD step led to a dramatic increase in accuracy and the overall limit of detection when using 145 previously defined and valid SARS-CoV-2 positive specimens with relatively low, medium, and high cycle thresholds (CT). This simple workflow change led to an overall detection from 94/145 (64.8%) to 131/145 (90.3%), with an additional 37 specimens being detected. CT value ranges revealed that 90% of the specimens in the 33 ≤ CT < 35.3 CT range were detected, whereas with the SDD workflow, only 30% of positive specimens were detected in this same range. Hands-on time for each specimen also improved and showed overall time savings. CONCLUSION: The simple workflow modification eliminating the SDD led to an overall improvement in the detection of positive specimens and also simplified workflow and reduced hands-on time.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19 Testing , Humans , Nasopharynx , Specimen Handling
14.
J Clin Virol ; 143: 104945, 2021 10.
Article in English | MEDLINE | ID: covidwho-1364216

ABSTRACT

While diagnosis of COVID-19 relies on qualitative molecular testing for the absence or presence of SARS-CoV-2 RNA, quantitative viral load determination for SARS-CoV-2 has many potential applications in antiviral therapy and vaccine trials as well as implications for public health and quarantine guidance. To date, no quantitative SARS-CoV-2 viral load tests have been authorized for clinical use by the FDA. In this study, we modified the FDA emergency use authorized qualitative RealTime SARS-CoV-2 assay into a quantitative SARS-CoV-2 Laboratory Developed Test (LDT) using newly developed Abbott SARS-CoV-2 calibration standards. Both analytical and clinical performance of this SARS-CoV-2 quantitative LDT was evaluated using nasopharyngeal swabs (NPS). We further assessed the correlation between Ct and the ability to culture virus on Vero CCL81 cells. The SARS-CoV-2 quantitative LDT demonstrated high linearity with R2 value of 0.992, high inter- and intra-assay reproducibility across the dynamic range (SDs ± 0.08-0.14 log10 copies/mL for inter-assay reproducibility and ± 0.09 to 0.19 log10 copies/mL for intra-assay reproducibility). Lower limit of detection was determined as 1.90 log10 copies/mL. The highest Ct at which CPE was detected ranged between 28.21-28.49, corresponding to approximately 4.2 log10 copies/mL. Quantitative tests, validated against viral culture capacity, may allow more accurate identification of individuals with and without infectious viral shedding from the respiratory tract.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19 Testing , Clinical Laboratory Techniques , Humans , Laboratories , RNA, Viral/genetics , Reproducibility of Results , Sensitivity and Specificity
15.
Build Environ ; 205: 108239, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1347510

ABSTRACT

Airborne transmission of respiratory diseases has been under intense spotlight in the context of coronavirus disease 2019 (COVID-19) where continued resurgence is linked to the relaxation of social interaction measures. To understand the role of speech aerosols in the spread of COVID-19 globally, the lifetime and size distribution of the aerosols are studied through a combination of light scattering observation and aerosol sampling. It was found that aerosols from speaking suspended in stagnant air for up to 9 h with a half-life of 87.2 min. The half-life of the aerosols declined with the increase in air change per hour from 28 to 40 min (1 h-1), 10-14 min (4 h-1), to 4-6 min (9 h-1). The speech aerosols in the size range of about 0.3-2 µm (after dehydration) witnessed the longest lifetime compared to larger aerosols (2-10 µm). These results suggest that speech aerosols have the potential to transmit respiratory viruses across long duration (hours), and long-distance (over social distance) through the airborne route. These findings are important for researchers and engineers to simulate the airborne dispersion of viruses in indoor environments and to design new ventilation systems in the future.

16.
FEBS J ; 288(17): 5042-5054, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1295003

ABSTRACT

The COVID-19 pandemic has highlighted the vulnerability of people with diabetes mellitus (DM) to respiratory viral infections. Despite the short history of COVID-19, various studies have shown that patients with DM are more likely to have increased hospitalisation and mortality rates as compared to patients without. At present, the mechanisms underlying this susceptibility are unclear. However, prior studies show that the course of COVID-19 disease is linked to the efficacy of the host's T-cell responses. Healthy individuals who can elicit a robust T-cell response are more likely to limit the severity of COVID-19. Here, we investigate the hypothesis that an impaired T-cell response in patients with type 2 diabetes mellitus (T2DM) drives the severity of COVID-19 in this patient population. While there is currently a limited amount of information that specifically addresses T-cell responses in COVID-19 patients with T2DM, there is a wealth of evidence from other infectious diseases that T-cell immunity is impaired in patients with T2DM. The reasons for this are likely multifactorial, including the presence of hyperglycaemia, glycaemic variability and metformin use. This review emphasises the need for further research into T-cell responses of COVID-19 patients with T2DM in order to better inform our response to COVID-19 and future disease outbreaks.


Subject(s)
COVID-19/immunology , Diabetes Mellitus, Type 2/immunology , Hyperglycemia/immunology , T-Lymphocytes/immunology , COVID-19/complications , COVID-19/pathology , COVID-19/virology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/pathology , Diabetes Mellitus, Type 2/virology , Humans , Hyperglycemia/complications , Hyperglycemia/pathology , Hyperglycemia/virology , Pandemics , SARS-CoV-2/pathogenicity , T-Lymphocytes/virology
17.
Clin Infect Dis ; 72(12): e1146-e1153, 2021 06 15.
Article in English | MEDLINE | ID: covidwho-1269565

ABSTRACT

The role of children in the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains highly controversial. To address this issue, we performed a meta-analysis of the published literature on household SARS-CoV-2 transmission clusters (n = 213 from 12 countries). Only 8 (3.8%) transmission clusters were identified as having a pediatric index case. Asymptomatic index cases were associated with a lower secondary attack in contacts than symptomatic index cases (estimate risk ratio [RR], 0.17; 95% confidence interval [CI], 0.09-0.29). To determine the susceptibility of children to household infections the secondary attack rate in pediatric household contacts was assessed. The secondary attack rate in pediatric household contacts was lower than in adult household contacts (RR, 0.62; 95% CI, 0.42-0.91). These data have important implications for the ongoing management of the COVID-19 pandemic, including potential vaccine prioritization strategies.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Child , Family Characteristics , Humans , Incidence , Pandemics
18.
J Mol Diagn ; 23(6): 778-779, 2021 06.
Article in English | MEDLINE | ID: covidwho-1187797
19.
Chin J Nat Med ; 19(6): 473-480, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1258508

ABSTRACT

Huashi Baidu prescription (HSBDF), recommended in the Guideline for the Diagnosis and Treatment of Novel Coronavirus (2019-nCoV) Pneumonia (On Trials, the Seventh Edition), was clinically used to treat severe corona virus disease 2019 (COVID-19) with cough, blood-stained sputum, inhibited defecation, red tongue etc. symptoms. This study was aimed to elucidate and profile the knowledge on its chemical constituents and the potential anti-inflammatory effect in vitro. In the study, the chemical constituents in extract of HSBDF were characterized by UPLC-Q-TOF/MS in both negative and positive modes, and the pro-inflammatory cytokines were measured by enzyme-linked immunosorbent assays (ELISA) to determine the effects of HSBDF in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. The results showed that a total of 217 chemical constituents were tentativedly characterized in HSBDF. Moreover, HSBDF could alleviate the expression levels of IL-6 and TNF-α in the cell models, indicating that the antiviral effects of HSBDF might be associated with regulation of the inflammatory cytokines production in RAW264.7 cells. We hope that the results could be served as the basic data for further study of HSBDF on anti-COVID-19 effect.


Subject(s)
Anti-Inflammatory Agents/chemistry , Antiviral Agents/chemistry , COVID-19 Drug Treatment , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/therapeutic use , Plant Extracts/chemistry , SARS-CoV-2/drug effects , Anti-Inflammatory Agents/therapeutic use , Antiviral Agents/therapeutic use , Humans , Plant Extracts/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL